Identifying the Drivers of Protein Environment Classification

By Sophie Yeh, Edward Kirton, Delaney Scheiern, Haibi Lu

Outline

- 1. Intro 1.5 min Ed
- 2. EDA: class imbalance 4 min Haibi
- 3. Final Model Process 7 min
 - a. Why neural net & other baselines 1 min Haibi
 - b. Optuna 2 min Ed
 - c. XGB 2 min Sophie
 - d. NN 2 min Delaney
- 4. Evaluation with other models 2.5 min Sophie
- 5. Explainability 3 min Delaney
- 6. Conclusions 2 min Ed

Motivation

Labels: DNA samples from various environments

Features: Samples each have 16k protein counts

Data

Exploratory Data Analysis

Data Source:

- Joint Genome Institute Online Database
 - https://gold.jgi.doe.gov/index

Data Features and Labels

- Features: Protein Family Ids (Pfam): Known protein sequences
- Labels: Environments
 - EMPO1
 - EMPO2
 - EMPO3

Exploratory Data Analysis

0.000000e+00 0.000000e+00

Data Shape

	◄ 16306 Pfam								-	
1	PF00001.19	PF00002.22	PF00003.20	PF00004.27	PF00005.25	PF00006.23	PF00007.20	PF00008.25	PF00009.25	
785	0	0	0	2649	14350	1225	0	0	2214	
λ	0	0	0	662	3805	293	0	0	515	
					➡					
	PF00001.19	PF00002.2	22 PF00003.	20 PF00004	.27 PF00005	.25 PF00006	.23 PF00007	.20 PF00008	.25 PF00009	9.25
	0.000000e+00	0.000000e+0	00	0.00 0.0040	0.0062	243 0.0010)39	0.0 0.0000	000 0.003	265

0.013739

0.001026

0.0

0.000000

0.003575

0.0

0.002235

Exploratory data analysis

Training-Test Data Split

- 70/30 Split Training Test
- 80/20 Split Training Validation
- Label Distribution In Training Dataset

EMPO_1	EMPO_2	EMPO_3	
Free-living	Non-saline	Aerosol (non-saline)	8
		Sediment (non-saline)	73
		Soil (non-saline)	303
		Subsurface (non-saline)	
		Surface (non-saline)	5
		Water (non-saline)	245
	Saline	Hypersaline (saline)	15
	Sediment (saline		14
		Surface (saline)	6
		Water (saline)	290
Host-associated	Animal	Animal corpus	4
		Animal proximal gut	39
	Plant	Plant corpus	1
		Plant rhizosphere	
		Plant surface	6

Truncaded SVD to 3D: Grouped by Environment Plant rhizosphere Soil (non-saline)

. Water (non-saline)

•

- -
- Animal proximal gut .
- Sediment (non-saline) 0
- Sediment (saline) .
- Surface (saline) .
- Aerosol (non-saline) •
- Hypersaline (saline) ٠
- Surface (non-saline)
- Plant corpus
- Animal corpus .
- Plant surface •

0.02

0.00

Truncated Singular Value Decomposition (SVD)

0.030

0.035

0.040

0.015

0.020

0.025

Approach

Modeling Process Overview

- Trained Models
 - Decision Tree (Baseline)
 - XGBoost
 - Neural Networks

- Metric of Interest
 - Weighted F1 Score

$$F_1 = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}} = rac{ ext{TP}}{ ext{TP} + rac{1}{2}(ext{FP} + ext{FN})}$$

Hyperparameter tuning


```
def train_and_evaluate {...}
```

```
def objective(trial):
    learning_rate = trial.suggest_float('learning_rate', 0.0001, 0.01)
    layer_size = trial.suggest_int('layer_size', 20, 1024)
    dropout = trial.suggest_float('dropout', 0, 0.1)
    F1 = train_and_evaluate(learning_rate, layer_size, dropout)
    return F1
```

```
study = optuna.create_study(
   direction="maximize",
   sampler=optuna.samplers.TPESampler(),
   pruner=optuna.pruners.MedianPruner(
        n_warmup_steps=20)
)
study.optimize(objective, n_trials=100)
```

```
print(study.best_params)
```

XGBoost

- 1. Baseline model is very similar but Optuna helped to fine-tune the parameters.
- 2. Curves are ideal with some overfitting to ensure model complexity is maximized.
- 3. Pros of XGB: fast setup and training, simple model, high evaluation metrics.

Feedforward Neural Network

Validation F1 Score of 1 Layer: 0.9466294050216675 Validation F1 Score of 2 Layer: 0.9490211009979248 Validation F1 Score of 3 Layer: 0.9133524894714355

Optuna hyperparameters for 2 hidden layers:

```
{'learning_rate': 0.006729391788774663,
    'hidden_layer_size1': 315,
    'hidden_layer_size2': 826,
    'kernel_regularizer': 4.523985086552334e-05,
    'bias_regularizer': 4.851063379560055e-05,
    'activity_regularizer': 3.62120961768956e-05,
    'dropout': 0.06862369288330496}
```


Model Evaluation

Overall performance across models on test set

	Decision Tree	XGBoost	Neural Network	
F1 weighted avg	0.8569	0.9308	0.9230	
Pros	Simple & fast	Simple & fast, performs better than DT	Complex, opportunity for better explainability	

Test Set Confusion Matrix

Metrics can be skewed by

lack of training samples in a label for the training data & no missing labels in the test set. More data is needed.

Confusion Matrix XGBoost

Neural Net

Classification Report: F1-Score

XGB and NN performed similarly well across labels, but did not attempt to predict small classes like Decision Tree.

Decision Tree

Classification Report

	precision	recall	f1-score	support
Aerosol (non-saline)	0.0000	0.0000	0.0000	3
Animal corpus	1.0000	1.0000	1.0000	3
Animal proximal gut	0.9286	0.8667	0.8966	15
Hypersaline (saline)	0.7143	0.8333	0.7692	6
Plant corpus	0.0000	0.0000	0.0000	0
Plant rhizosphere	0.7895	0.7500	0.7692	40
Plant surface	1.0000	1.0000	1.0000	4
Sediment (non-saline)	0.9091	0.7895	0.8451	38
Sediment (saline)	0.3077	0.5000	0.3810	8
Soil (non-saline)	0.9084	0.8815	0.8947	135
Subsurface (non-saline)	0.8913	0.8039	0.8454	51
Surface (non-saline)	0.3333	1.0000	0.5000	1
Surface (saline)	0.0000	0.0000	0.0000	0
Water (non-saline)	0.8716	0.8962	0.8837	106
Water (saline)	0.8615	0.8889	0.8750	126
accuracy	0.8526	0.8526	0.8526	0
macro avg	0.6343	0.6807	0.6440	536
weighted avg	0 8641	0.8526	0.8569	536

XGBoost Classification Report

precision recall f1-score support Aerosol (non-saline) 1.0000 0.6667 0.8000 Animal corpus 1.0000 1.0000 1.0000 Animal proximal gut 0.9333 0.9333 Hypersaline (saline) 0.8333 0.8333 0.8333 Plant rhizosphere 0.8250 0.8684 40 0.2500 Plant surface 1.0000 0.4000 Sediment (non-saline) 1.0000 0.8421 0.9143 38 0.8750 0.8750 Sediment (saline) 0.8750 Soil (non-saline) 0.9778 0.9496 135 Subsurface (non-saline) 0.9074 0.9608 0.9333 Surface (non-saline) 1.0000 1.0000 1.0000 Water (non-saline) 0.8981 0.9151 0.9065 106 Water (saline) 0.9764 0.9841 0.9802 126 accuracy 0.9328 0.9328 0.9328 macro avg 0.9433 0.8510 0.8765 536 weighted avg 0.9343 0.9328 0.9308 536

NN Classification Report

3

3

15

6

4

8

51

1

0

	precision	recall	f1-score	support
Aerosol (non-saline)	1.0000	0.6667	0.8000	3
Animal corpus	1.0000	1.0000	1.0000	3
Animal proximal gut	1.0000	1.0000	1.0000	15
Hypersaline (saline)	1.0000	1.0000	1.0000	6
Plant rhizosphere	0.7091	0.9750	0.8211	40
Plant surface	0.0000	0.0000	0.0000	4
Sediment (non-saline)	0.9250	0.9737	0.9487	38
Sediment (saline)	0.5714	1.0000	0.7273	8
Soil (non-saline)	0.9680	0.8963	0.9308	135
Subsurface (non-saline)	0.9074	0.9608	0.9333	51
Surface (non-saline)	0.5000	1.0000	0.6667	1
Water (non-saline)	0.9505	0.9057	0.9275	106
Water (saline)	0.9916	0.9365	0.9633	126
accuracy	0.9235	0.9235	0.9235	0
macro avg	0.8095	0.8704	0.8245	536
weighted avg	0.9295	0.9235	0.9230	536

Explainability

SHAP values - Water (saline) from XGBoost Model

SHAP values - Subsurface (non-saline)

SHAP consistent with our knowledge

Animal proximal gut examples:

- PF00923 : Transaldolase (carbohydrate metabolism)
- PF02416, PF00902 : Twin-arginine translocation pathway (cellulase export)

This supports the idea that SHAP values are useful for identifying proteins of interest.

Other proteins whose function is not clear warrant further consideration.

Conclusions

Key Results: Biological Significance

- XGB SHAP values indicate which proteins have +/- association with particular environments
 SHAP did not work out-of-the-box on the NN due to the large number of parameters (required >32GB RAM)
- Automatic classification labels can be added to many thousands of samples that do not have EMPO labels

Learnings

• Train-Test splits and stratified sampling significantly impacts model performance for high dimensional, small sample datasets.

Future work

- Must collect more data on classes with fewer samples to address class imbalance
- Figure out how to run SHAP in parallel in the cloud for NN model (promises to annotate more proteins than tree-based models)

Thank you!

Contributions:

Sophie: XGBoost, Label encoding, Model evaluation

Edward: Data collection, Neural Network (EMPO labels), Optuna

Delaney: Repo organization, F1 metric, Decision Tree, Dim. reduction, Hyperparameter tuning, SHAP, `Main` notebook

Haibi: Exploratory data analysis, Data preprocessing, Neural network (GOLD labels)

Appendix

Decision Tree Test Set Confusion Matrix

Confusion Matrix

XGB outperforms DT with less incorrect predictions, but only a small difference (1 to 3 samples).

